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Abstract. In present-day electronic systems, application subsystems
from different vendors and with different criticality levels are integrated
within the same hardware. Hence, encapsulation of these subsystems is
required in the temporal as well as in the spatial domain. Partitioning
Operating Systems (OSs) are employed to allow shared access of appli-
cations to critical resources within an integrated system.

In this paper we will discuss fundamental properties of partitioning OSs
and compare features of existing solutions. Thereby, we will investigate on
LynxOS which is a partitioning OS according to ARINC653, on Tresos,
a partitioning OS in accordance with AUTomotive Open System ARchi-
tecture (AUTOSAR), as well as on two prototypical partitioning OS re-
alizations that have been implemented within the Dependable Embedded
COmponents and Systems (DECOS) project, an integrated project within
the Sixth Framework Programme of the European Commission.

Keyworks: Embedded Systems, Dependability, Partitioning OS.

1 Introduction

Dramatic advances within the last years have paved the way for the integration
of application subsystems by different vendors into a single coherent embed-
ded system architecture. Thereby, important initiatives (e. g., AUTOSAR [1],
Integrated Modular Avionics (IMA) [2], DECOS [3]) in the automotive, avionic
and related domains have been concerned with a systematic, domain oriented
process to bundle different application subsystems within the same hardware.
These approaches target at increased interoperability, a reduction of the number
of Electronic Control Units (ECUs), cables and connectors, and an increase in
reliability of the overall system.

A fundamental pre-requisite for the integration of different application sub-
systems is given by a reliable protection mechanism that partitions a system into
execution spaces that prohibit unintended interference of different application
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subsystems. Reliable protection in both the spatial and the temporal domains
is particularly relevant for systems where the co-existence of safety-critical and
non safety-critical application subsystems shall be supported. Partitioning on
node level enforces fault containment and thereby enables simplified replace-
ment/update and increased reuse of SW components. A major commercial ben-
efit of partitioning comes with significantly reduced certification effort for mixed
criticality systems.

This paper investigates on different existing OSs that are designed to support
the partitioning of hardware resources in order to enable the integration of differ-
ent application subsystems. Such partitioning OSs can be found in the automo-
tive (e. g., Tresos according to AUTOSAR), the avionic (e. g., LynxOS according
to ARINC653 for IMA systems), or in cross-industry approaches (e. g., DECOS
Encapsulated Execution Environment (EEE) [4], DECOS partitioning OS-based
on Real-Time Application Interface (RTAI) [5]).

In this paper we identify fundamental features of partitioning OSs and com-
pare these features based on the existing partitioning OSs: Tresos, LynxOS,
DECOS EEE, and the RTAI based DECOS partitioning OS.

The remainder of the paper is structured as follows: Subsequent to this intro-
duction, section 2 describes the concepts of an integrated architecture as tackled
by AUTOSAR, IMA, and DECOS. Section 3 outlines the fundamentals of par-
titioning OSs that enable spatial and temporal partitioning. Section 4 outlines
properties of TRESOS, LynxOS, and the DECOS OSs, whereas section 5 com-
pares the features of these solutions. Section 6 concludes this paper.

2 Integrated Architecture

Characteristic of an integrated architecture is the sharing of computational re-
sources (e. g., CPU time, memory) and communication resources (i. e., network
bandwidth) among multiple software components. This strategy leads to a reduc-
tion of the number of deployed node computers and avoids unnecessary resource
duplication. In the following we discuss our system model of an integrated ar-
chitecture. In particular, we describe the model of an integrated node computer,
which exploits a partitioning operating system to establish an execution envi-
ronment for multiple software components.

2.1 System Model

Today large distributed computer systems are typically constructed out of node
computers (e. g., denoted as ECUs in the automotive domain). However, there is
a shift towards a component-based integration at a finer level of granularity. In
integrated architectures, such as DECOS or AUTOSAR, vendors supply software
components instead of node computers. In an additional step these software
components are then allocated to the ECUs of the target platform [6,7]. This
integration of software components on an integrated node is depicted in Figure 1
and will replace the “1 Function – 1 ECU” methodology of today’s federated
architectures.
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Fig. 1. Integrated Architecture

In order to provide an execution environment that allows the execution of
software components without unintended interference, temporal and spatial par-
titioning for both computational and communication resources is required. For
both communication and computational resources, one can distinguish two types
of partitioning [8]:

– Spatial Partitioning. Spatial partitioning ensures that one software com-
ponent cannot alter the code or private data of another software component.
Spatial partitioning also prevents a software component from interfering with
control of external devices (e. g., actuators) of other software components.

– Temporal Partitioning. Temporal partitioning ensures that a software
component cannot affect the ability of other software components to access
shared resources, such as the common network or a shared CPU. This in-
cludes the temporal behavior of the services provided by resources (latency,
jitter, duration of availability during a scheduled access).

While partitioning of communication resources in an integrated architecture
has been addressed in [9], this paper focuses on the partitioning of computational
resources.

2.2 Model of an Integrated Node Computer

An integrated node computer provides an execution environment for multiple
collocated software components of one or more application subsystems as shown
in Figure 1. The model of an integrated node computer comprises:

– Software components: The software components implement the application
functionality. A software component is part of an application subsystem and
represents the unit of distribution. Each software component is the respon-
sibility of a single organizational entity (e. g., a specific supplier). The inter-
action with other software components occurs through the communication
services provided by the communication middleware.

– Partitioning operating system: The purpose of the partitioning operating
system is the establishment of multiple encapsulated execution environments
for combining multiple software components within a single node computer.
The encapsulated execution environment provided for a software component
is denoted as a partition and provides guaranteed computational resources
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(CPU time, memory). The partitioning operating system implements mech-
anisms for spatial and temporal partitioning in order to protect the compu-
tational resources of the individual partitions. The scheduling of partitions
needs to ensure that a timing failure of a software component, such as a
worst-case execution time violation, does not affect the CPU time avail-
able to other partitions. In analogy, the spatial partitioning mechanisms of
the partitioning operating system include memory protection between parti-
tions (e. g., hardware-enforced with a Memory Management Unit (MMU)).
Thereby, each partition emulates a virtual node computer that is dedicated
to a single software component only.

– Communication middleware: The main purpose of the middleware is the
management of the communication resources as previously described. The
middleware provides a technology invariant interface to the software compo-
nents that abstracts from any hardware-specific implementation details. For
example, in AUTOSAR [7] the runtime environment (RTE) provides such a
generic communication service for the applications. In DECOS the high-level
virtual network services perform this task [10].

– Communication controller: The purpose of the communication controller is
to provide access to the underlying communication system. By the use of
hardware drivers and the provision of standardized Application Program-
ming Interface (API) one typically abstracts from the used hardware and
thus ensures reuse of existing code in future systems.

– Input/Output (I/O) and drivers: The software components hosted on a node
computer exploits the input/output subsystem for interacting with the con-
trolled object and the human operator. This interaction occurs either via
a direct connection to sensors and actuators or via a fieldbus (e. g., Local
Interconnect Network (LIN) [11]). The latter approach simplifies the instal-
lation – both from a logical and a physical point of view – at the expense of
increased latency of sensory information and actuator control values.

3 Partitioning OS Fundamentals

Integrated node computers as those introduced in Section 2 raise the demand for
an OS which is in charge of managing the available resources. Besides the usual
feature set of an OS like process scheduling, memory management, inter-process
communication and Input/Output, support for partitioning in the temporal and
the spatial domains as mentioned in Section 2 is important for encapsulation as
the basis for composability. A more detailed discussion is included in [12].

The goal of a partitioning OS as depicted in Figure 2 is to provide fault con-
tainment equivalent to an idealized system in which each partition is allocated an
independent processor and associated peripherals, and all inter-partition commu-
nications are carried out on dedicated lines [8]. As mentioned above, partitioning
can be splitted into spatial and temporal partitioning. Both of this partitioning
dimensions have an influence on the implementation of the basic OS features
listed below as well as on the general OS API. For instance, no system call shall
corrupt other partitions or the OS itself.
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Fig. 2. Concept of a partitioning OS

In the following, we will investigate on the fundamental properties of an par-
titioning OS, namely scheduling, memory management, and communication.

3.1 Scheduling

Scheduling is concerned with the allocation of resources to software components
including the instants of invocation, the assignment of memory regions and the
right to access I/O. We can distinguish between static (i. e., offline) and dy-
namic (i. e., online) scheduling approaches. In [13] the following four classes of
scheduling paradigms in the area of real-time systems are outlined:

Static table-driven scheduling: The resource allocation is based on a static
schedulability analysis. At runtime, the invocation of tasks is triggered ac-
cording to a pre-defined schedule, which is usually called table.

Static priority driven preemptive scheduling: A static schedulability ana-
lysis is performed but, in contrast to static table-driven scheduling, software
components are scheduled at runtime according to a ”highest priority first”
strategy.

Dynamic planning-based scheduling: With dynamic planning-based sched-
uling, resource allocation to a software component is decided dynamically
based on a feasibility check (that is also performed at runtime).

Dynamic best effort scheduling: The focus of dynamic best effort sched-
uling is to provide an efficient allocation of given resources to software com-
ponents. No feasibility checks are performed. Hence, no guarantees with re-
spect to the real-time behavior can be given and tasks may be aborted during
their execution.

A partitioning OS typically supports a static table-driven scheduling approach
that is very well suited for safety-critical, hard real-time systems since its static
nature makes it possible to check the feasibility of the schedule in advance.
Furthermore, the maximum time between two partition activations is known in
advance.

In addition to partitioning OS services, it should be possible to host several
software components within a single partition. In this case, the partitioning OS
schedules the partitions and a secondary OS schedules the software components
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within a partition (multi-level scheduling). This secondary OS can implement a
simple table-driven scheduling or even a full featured OS or virtual machine.

3.2 Memory Management

Memory management deals with the allocation of memory to a partition (and
to the software components residing in that partition). Hence, the OS shall
ensure that no undesired interference between any two partitions might occur.
Therefore, it must be avoided that a software component is able to write into
or execute code from a different partition if not explicitly granted to do so.
Spatial partitioning is only possible if the processor provides hardware support
for memory protection, i. e., a dedicated protection unit that assigns memory
access rights to a certain partition and that avoids errors by strictly blocking
illegal requests of faulty partitions.

In existing implementations, two approaches can be found with respect to
memory protection that depend on the available hardware support.

Virtual Address Space: Memory protection in modern OSs is typically orga-
nized by providing a virtual address space to each process (e. g., Windows,
Linux). Virtual addresses are translated to physical addresses by an MMU.
In case a virtual address cannot be translated into a physical address (due
to an illegal request from a software component), a protection trap is raised.

Protection Blocks: When using protection blocks, multiple memory areas are
assigned to software components with different access rights, e. g., read,
write, execute. This approach is comparably simpler and thus favored for
low-end embedded devices that offer a Memory Protection Unit (MPU).

3.3 Interaction

A partitioning OS must support the interaction of a software component with
other software components and with its physical environment. We distinguish
between: (a) communication that takes place between software components on
the same physical node (i. e., intra-node communication), (b) communication
between software components that are located on different nodes (i. e., inter-node
communication), and (c) interaction of a software component with its physical
environment (i. e., I/O interaction).

Intra-Node Communication. The interaction between software components
that are located in different partitions on the same physical hardware node
must be supported by a partitioning OS. The most simple mechanism for intra-
node communication is to provide shared memory regions that can be accessed
by more than one partition. More sophisticated approaches provide message
channels / queues for intra-node communication.

Inter-Node Communication. Inter-node communication is typically sup-
ported by a middleware layer as discussed in Section 2 that provides a message-
based interface to a software component. The inter-node communication must be
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supported by a partitioning OS in the sense that the realization of a middleware
layer is enabled that provides a message-based communication interface to the
partitions and that accesses and instruments the communication controller of a
node.

I/O Interaction. I/O interaction of a software component with its physical
environment takes place either across a standardized fieldbus (e. g., LIN [11],
Controller Area Network (CAN) [14]) or via direct I/O. Thus, I/O interaction
is concerned with the protection of I/O hardware of a given microcontroller
(e. g., a particular I/O block). In case a transducer or a fieldbus is instrumented
only from a single partition, it is sufficient to grant this partition access to the
transducer/fieldbus. If more than one partition needs to access I/O, typically a
shared partition is implemented that offers I/O services to other partitions by
inter and intra-node communication.

It should be mentioned that if a memory-mapped device is employed, con-
trolled I/O interaction must be supported by the memory management mecha-
nism as previously discussed. This means that a partition is granted access to
the memory region to which the memory-mapped device is linked.

4 Overview of Partitioning OSs

In this section we discuss the capabilities of partitioning OSs that have been
selected from the avionics (i. e., LynxOS), automotive (i. e., Tresos), and cross-
industry domains (i. e., DECOS OSs). Our survey is based on data available
from the respective vendors/research groups. No actual verification of the stated
properties has been carried out for this survey.

4.1 Encapsulated Execution Environment – DECOS Core OS

The Encapsulated Execution Environment (EEE) was developed by TTTech
within the DECOS project and consists of the DECOS Core Operating System
(COS) as well as a set of graphical configuration tools to generate configuration
files.

The COS has been written from scratch with strict temporal and spatial
partitioning of all system resources in mind. Using a static configuration is the
fundamental mechanism to implement the partitioning functionality. Resource
ownership and scheduling is defined statically and can be checked for feasibility in
advance. Besides partitioning mechanisms, the COS provides a system interface
for intra-node communication as well as error handling and health checks.

Scheduling. The COS uses a two-level scheduling hierarchy. The top-level
schedule table divides the schedule cycle into multiple time slots, each of them
assigned to a single partition. A second schedule table is used to trigger events
and their corresponding event handler function within those partition intervals.
Both of these schedule tables are generated during system configuration. The
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table responsible for scheduling the partitions is fixed whereas the secondary
table can be reconfigured during runtime. The COS ensures that SW components
can only reconfigure events belonging to their partition as well as that the new
scheduled time for an event lies within a partition interval of the same partition.

For event handlers within partitions fixed priority-based preemptive schedul-
ing is used. This is also necessary for hardware interrupts. An interrupt belonging
to a partition is only enabled if this partition is currently scheduled. If this in-
terrupt is triggered, it is mapped to a high-priority partition event with the ISR
as event handler.

Temporal partitioning among different partitions is guaranteed since at the
end of a partition time slot, the COS preempts all running event handlers, dis-
ables all interrupt sources belonging to this partition and finally sets up the
environment for the next partition.

Memory Management. The memory protection mechanisms of the COS de-
pends on an MMU that allows the concurrent assignment of permissions to at
least five different memory regions (protection blocks). Each partition has exe-
cute rights for all its private code as well as for a memory region containing the
system interface functions and libraries. Additionally, each partition has read
and write permissions for its private data and a dedicated part of a node-wide
shared memory. The last protection block is used to grant read access to the
whole shared memory.

Interaction. Intra-node communication can be done by using the message
channel service provided by the COS which can either be sampled or queued
and support an arbitrary number of producers and consumers. A simpler way
of intra-node communication can be achieved by using the node-wide shared
memory. In the DECOS project this memory is also used for private inter-node
communication lines (memory mapped I/O).

Another way to provide private access to I/O devices is to deny direct access
to hardware for usual partitions1. A dedicated I/O partition with the necessary
access rights is used which provides an API for the different hardware compo-
nents.

4.2 RTAI-Based Partitioning OS

In the course of the DECOS project, a partitioning operating system has been
developed, which is based on the real-time Linux variant RTAI and which ex-
ploits the Linux Real-Time (LXRT) extension of RTAI for realizing spatial and
temporal partitioning. LXRT is an extension of RTAI that enables the develop-
ment of hard real-time programs running in user space by utilizing the real-time
scheduler provided by RTAI. The RTAI real-time scheduler executes the Linux
kernel as an idle task, i. e., non real-time Linux applications are only executed
when no RTAI/LXRT tasks are active.

1 Only possible if the target platform provides support for such a restricted run level.
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The central element of the partitioning OS is a time-triggered dispatcher, an
RTAI kernel module that is responsible for the allocation of processor time to
the individual partitions. The partitions are implemented as LXRT tasks, thus
executed in user space while preserving the temporal benefits of RTAI.

Scheduling. The activation of partitions is performed by the time-triggered
dispatcher that extends the built-in functionality of RTAI/LXRT operating sys-
tem. The dispatching points are derived from a static dispatching table which
is created during system configuration. The dispatching table consists of the
activation of a particular partition along with its maximum time granted for
execution.

For providing temporal partitioning, individual partitions must not be able
to exceed their maximum assigned processor time as defined in the dispatching
table, even in the case of a software fault within a partition. For this purpose,
deadline monitoring is done by the time-triggered dispatcher: The dispatcher is
periodically executed according to the dispatching table. Due to its realization
as an RTAI kernel module with the system-wide highest priority, an eventually
active partition would be preempted by the dispatcher. The dispatcher analyzes
the processor state of the previously executed partition right after its activation
and, eventually, removes the partition from the ready-queue of the RTAI sched-
uler. Due to this enforced preemption by RTAI, the partitions are not required
to act cooperatively and release the processor on their own.

Memory Management. Memory protection of the RTAI-based partitioning
operating system relies on the MMU functionality provided by the processor
on which it is executed. Since a processor that is equipped with an MMU ba-
sically distinguishes between supervisor mode and user mode, where memory
access is only protected in the latter one, spatial partitioning by exploiting the
functionality of the MMU can only be provided for applications running in user
mode.

Like in many real-time Linux variants, applications using the RTAI API are
implemented as Linux kernel modules. Thus, they are executed in supervisor
mode and could circumvent memory protection. However, due to the realization
of the partitions as LXRT tasks which are executed in user mode, the mem-
ory protection mechanisms of Linux are preserved and thus spatial partitioning
between individual partitions is provided.

Interaction. According to the system model of DECOS, a software compo-
nent, denoted in DECOS as job [3], is the basic unit of work that is distributed
among the nodes of a DECOS cluster. Usually, a mapping of one job per parti-
tion is established. Communication between jobs is realized via virtual network
services [10]. Thus, from the point of view of the individual jobs it is transparent
whether an interaction occurs via intra-node or inter-node communication.

The virtual network service is provided by the virtual network middleware,
which is implemented in a dedicated partition on each DECOS node. The inter-
action of jobs with the virtual network middleware occurs via shared memory,
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denoted as ports. The memory layout and access rights of these ports is de-
termined during system configuration. The code sequences for allocating and
initializing the corresponding memory areas are then statically linked to the
application code in order to prevent an application developer from allocating
forbidden areas. The same strategy is followed for protecting I/O regions, which
are accessed by the use of memory mapped I/O, i. e., by mapping the physical
address of the I/O in the virtual address space of a particular partition.

4.3 AUTOSAR OS – Tresos

The AUTomotive Open System ARchitecture (AUTOSAR) standard contains
the operating system specification AUTOSAR OS which defines the main fea-
tures of an AUTOSAR-compliant OS: real-time performance, static configura-
tion combined with a priority-based scheduling strategy and protective functions
for memory and timing during runtime. A further requirement is the capability
to be hostable on low-end microcontrollers. In order to support this, the AU-
TOSAR OS specification introduces four scalability classes, each of them with
different mandatory features. Those scalability classes also affect partitioning.
E.g., memory protection is only required for class three and four, timing protec-
tion for class two and four. The example OS for this section is Tresos, developed
by Elektrobit, which supports scalability classes one to four.

The AUTOSAR standard does not know the concept of partitions. Instead,
multiple OS-Applications, which form a cohesive functional unit composed of
tasks, Interrupt Service Routines (ISRs) and other resources, are used. OS-
Applications can either be trusted or non-trusted. Since trusted OS-Applications
are allowed to run with monitoring and protection features disabled at runtime,
a non-trusted OS-Application is the best fit to the partition notion like defined
in Section 3.

Scheduling. The AUTOSAR OS standard is based on OSEK/VDX which
is widely used in the automotive industry. In order to be OSEK-compatible,
AUTOSAR uses the same fixed priority-based preemptive scheduling strategy.
The scheduling is event-triggered and a high-priority event is always able to
reserve the CPU which prevents strict temporal partitioning. To support tem-
poral partitioning to a certain extent, two mechanisms are available in AU-
TOSAR: (1) Schedule tables which allow defining a statically, periodic activation
of events and (2) time monitoring which is used to limit the maximum execu-
tion time of tasks/ISRs, the maximum time they are allowed to hold a shared
resource/disable interrupts and the arrival rate of tasks/interrupts.

Memory Management. The basic memory protection requirement that shall
be fulfilled by the OS is to protect the data, code and stack section of tasks
within an OS-Application from other non-trusted OS-Applications. Additionally,
it should provide protection for private data and stack for tasks within the same
OS-Application. This requires hardware support in form of an MMU or an MPU.
Since this is highly platform specific, the AUTOSAR OS standard does not define
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implementation details. Tresos uses static allocation of memory to tasks and
OS-Applications in combination with an MPU to achieve spatial partitioning of
memory.

Interaction. All AUTOSAR software components run on top of the AUTOSAR
Runtime Environment (RTE), which acts as a communication abstraction layer.
The same interface in form of ports is provided whether intra-node or inter-
node information channels are used. The current version of the AUTOSAR RTE
specification (Release 2.0) does not support memory protection mechanisms even
if provided by the OS.

4.4 ARINC653-Compliant Partitioning OS – LynxOS-178

The operating system LynxOS-178 is a real-time operating system that has been
developed by LynuxWorks for safety-critical avionic applications based on Inte-
grated Modular Avionics (IMA) [2]. LynxOS-178 adheres to the ARINC stan-
dard 653 [15], which is known as APplication EXecutive (APEX) and defines
the services of the avionic software environment. APEX provides services for
partition management, process management, time management, memory man-
agement, interpartition communication, intrapartition communication, and diag-
nosis. In addition, LynxOS-178 distinguishes between a small partitioning kernel,
which establishes the encapsulated partitions, and higher software layers (e.g.,
for POSIX support) that run within the partitions. LynxOS-178 supports certifi-
cation to the highest criticality levels, namely DO-178B level A [16]. LynxOS-178
has already been deployed in safety-critical avionic military and aerospace sys-
tems.

Scheduling. For the scheduling of partitions, LynxOS-178 uses fixed cyclic
scheduling. Each partition is statically assigned CPU time via a periodically
recurring time slice. Thereby, interference between partitions is prevented in the
temporal domain. Within a partition, on the other hand, LynxOS-178 offers a
process-based execution environment with priority-based preemptive scheduling,
priority inheritance, and priority ceilings according to the POSIX model.

Memory Management. In analogy to the allocation of the CPU time, Lynx-
OS-178 statically performs the allocation of memory to the partitions. The mem-
ory allocation of a partition is fixed at design time and the configured memory
size cannot be changed at runtime. An MMU is employed for isolating the par-
titions from each other. In contrast to the memory allocation at the partition
level, dynamic memory management is supported within a partition. Therefore,
LynxOS-178 offers an API with POSIX-compliant calls. The software layer for
establishing this POSIX interface is not part of the LynxOS-178 partitioning
kernel, but executed in the partitions.

Interaction. For the interaction between partitions, ARINC653 specifies com-
munication channels that are accessible via two types of ports: sampling and
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queuing ports. At sampling ports, successive messages contain identical but up-
dated data. Received messages overwrite old information, thus requiring no mes-
sage queuing. In queueing ports, messages are assumed to contain uniquely differ-
ent data. Messages are buffered in queues, which are managed on a first-in/first-
out (FIFO) basis.

Inner-partition communication services (e. g., message queues, black boards,
semaphores, and events) are not part of the LynxOS-178 partitioning kernel, but
can be provided by software layers within the partitions.

5 Feature Comparison

Table 1 gives a brief overview of the features of the four partitioning OSs dis-
cussed in this paper. LynxOS-178 has the highest maturity level and provides the

Table 1. Feature Comparison Overview

DECOS COS DECOS RTAI Tresos LynxOS-178
Vendor TTTech Vienna Univer-

sity of Technol-
ogy

Electrobit Lynuxworks

Maturity prototype prototype commercial certified
Standard — — AUTOSAR ARINC653
Footprint ≤ 1 MB 1 – 10 MB (incl.

Linux Kernel)
≤ 1 MB ≥ 100 MB (incl.

secondary OSs)

Temporal Partitioning
DECOS COS Temporal partitioning ensured by static cyclic scheduling of par-

tition time slots. Deadline monitoring to detect faulty SW com-
ponents within a partition.

DECOS RTAI Temporal partitioning ensured by static cyclic scheduling of par-
tition time slots. Deadline monitoring to detect faulty SW com-
ponents within a partition.

Tresos No strict partitioning due to preemtive scheduling. Time moni-
toring to detect faulty SW components.

LynxOS-178 Temporal partitioning ensured by static cyclic scheduling of par-
tition time slots.

Spatial Partitioning
DECOS COS Private memory statically assigned and protected by MPU. Pri-

vate communication lines for I/O, inter-partition communication
and cluster-wide communication.

DECOS RTAI Private data protected by MMU. Private communication and I/O
by mapping memory into the virtual address room of partitions.

Tresos Private memory statically assigned and protected by MPU. Com-
munication middleware (RTE) does not support memory protec-
tion.

LynxOS-178 Private data protected by MMU.
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most features at the cost of higher hardware requirements. Tresos concentrates
on the compliance with the AUTOSAR OS specification, which focuses more
on backward compatibility and sophisticated communication middleware than
on partitioning. Both OSs for the DECOS project have been developed with
partitioning as core feature. The DECOS COS is a small OS written for low-
end embedded hardware whereas DECOS RTAI profits from the many features
provided by underlying Linux kernel.

6 Conclusion

The bundling of software components by different vendors and with different
levels of criticality on an integrated node computer as currently undertaken in
integrated architecture approaches (e. g., AUTOSAR, ARINC, DECOS) requires
strict partitioning of these software components at the OS level. A number of
partitioning OSs exist that aim at providing encapsulation of software compo-
nents in the temporal and the spatial domains.

In this paper we presented four partitioning OSs, i. e., DECOS EEE Core OS,
RTAI-based partitioning OS, Tresos, and LynxOS, and compared the features
of these partitioning OSs. Thereby, we investigated on the temporal and spatial
protection mechanisms as well as on the code size and the targeted area of
application of these partitioning OSs. It turned out that although all presented
partitioning OSs adhere to the same core principles, there are notable differences
with respect to maturity, code size, and support for spatial protection of these
OSs. In the future we expect significant improvements and further establishement
of partitioning OSs on different markets (particularly in the automotive domain).
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